

2.5/3D Packaging NEPP ETW

Dr. Douglas J. Sheldon
Assurance Technology Program Office (ATPO) Manager
Office of Safety and Mission Success
Jet Propulsion Laboratory, California Institute of Technology

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Overview - Review today's agenda

- Discussion of NEPP 2.5/3D Sheldon
 - Provide background, technology roadmaps, overview of NEPP products/deliverables
- "Statistics and Physics in Reliability" Lloyd
 - A rigorous and foundational understanding of physics and statistics is needed to address the reliability problems of 2.5/3D packaging technology.
- NEPP Packaging Tasks (Popelar, Suh, Ghaffarian)
 - Updates on current results
- DTRA 3D Packaging Alles
 - Radiation effects in complex structures with >50% High Z materials
- 2.5/3D Roadmaps and OSAT Advanced Packaging
 - Commerial growth and development of these technologies is continual and expansive. Need SOA industry partners to provide guideance and direction on options for NASA

The ever changing world of packaging

2D to 2.5D to 3D

- 2D is one or more die mounted in a single plane
- 2.5D consists of one or more die mounted on an intermediate interposer and then mounted onto the package substrate
 - Interposer can be:
 - Silicon
 - Glass
 - Ceramic
 - Organic
- 3D has many different combinations and options
 - Package-on-package
 - Stacked die with wire bond
 - Stacked die with wire bond and flip chip
 - Stacked die with TSV
 - Stacked die utilizing intermediate interposers

3D Packaging is a new technology! (Not)

TSV (Through-Silicon Via)

William Shockley (co-invented the transistor) filed a patent, "Semiconductive Wafer and Method of Making the Same" on October 23, 1958 and was granted the US patent (3,044,909) on July 17, 1962.

- Conceptually the idea of joining different devices together is very appealing and has been around for a long, long time.
- Only through the maturization of modern wafer and manufacturing processes has it finally become a reality

COTS, COTS, and COTS...

- 2.5/3D package technologies are driven by needs to shrink size, reduce weight and improve performance. (SWaP)
- NOT to improve reliability
- COTS = Commerical and often *Consumer* Off the Shelf Technologies
- *Consumer* = limited life expectancy, planned obsoloence
- Unless *very explicitly designed* from the ground up, these technologies are expected to have at best break even reliability compared with heritage Plastic Encapsulated Microcircuits (PEMs) and more likely to have worse reliability.
- This implies any use on NASA missions would require significant upscreening and qualification.

Reliability requirements for different markets

Reliability Requirements for Different Markets - IPC-7091

What different FIT rates mean graphically

Example of Concerns – 2.5/3D Packaging – IRPS 2018

- High-Density Fan-Out Technology for Advanced SiP and 3D Heterogeneous Integration Lee (Amkor)
 - FOWLP is divided into low-density and high-density by I/O density and multifunctionality.
 - Low-density fan-out package has core structure composed of 1~2 layers Cu RDL with 8~15um.
 - High-density fan-out package has 3~4 layers Cu RDL with 1~5um width. Demand is expected to increase significantly
 - Two options:
 - wafer-level system-in-package (WL-SiP)
 - 3D heterogeneous integration (3D SWIFT)
 - 3D SWIFT can bond top dies directly onto the mold sidevRDL of bottom fan-out packaging layer
 - 3 layers RDL with 5~10um width and Cu posts are formed on a carrier substrate
 - Biased HAST showed that 4/4um L/S Cu RDL meets the JEDEC 200 hours / 130°C / 85%RH /3.5V - 2/2um and 1/1um L/S Cu RDL dropped rapidly immediately after the biased HAST started.
 - change in the insulation resistance is strongly correlated with the intensity of the electric field generated between the Cu RDL.
 - Cu migration into the organic dielectric
 - New dielectric barrier layer required below 2um L/S.

I/O count & body size

Low dielectric constant materials needed for high density interconnections

Dielectric Film	k	Pore %	E (GPa)	H (GPa)	
Non-porous OSG	2.8	0	8.7	1.59	
Porous OSG A	2.2	45	3.1	0.57	
Porous OSG B	2.0	50	0.9	0.14	
Porous OSG C	1.8	60	0.5	0.07	
Non-porous Polymer	2.7	0	3.2	0.19	
Porous Polymer	2.2	15	1.1	0.11	

Ultra low dielectric films can be >60% porus!

Thickness scaling of COTS packaging

Package Height Comparison

- Extreme thickness scaling is required for modern cell phone applications
- 25% difference in lifetime with 20% change in thickness
- Independent of temperature stress

Unique EM results in Microbumps

$$\frac{1}{\text{MTTF}} = A \left(j - \frac{(jL)_c}{L} \right)^n \exp\left(-\frac{Q}{\text{RT}} \right)$$

- Compared with larger solder joints in C4 flip chip and BGA packaging, unique EM behaviors happen in micro bumps of 3D packaging due to their smaller dimensions
- Back Stress in Blech effect for short micro bumps is high enough to dramatically delay or eliminate the EM damage caused by Sn flux divergence
- It typically has smaller solder to metallization volume ratio, which can form a full IMC bump before the metallization is fully consumed

Specifications to Support Qualification

End-Product Advanced Packaging SMT Reliability Acceptability Standard for IPC J-STD-030 PC-9701-PC-9704 IPC-7092 Manufacture, Inspection, & Testing IPC-9706-IPC-9709 IPC-7093 of Electronic Enclosures IPC-7094 IPC-A-630 IPC-7095 Repair IPC-7711/21 Requirements and Acceptance for Storage Cable and Wire Harness Assemblies & Handling IPC/WHMA-A-620 Solderability IPC J-STD-020 IPC J-STD-002 IPC J-STD-033 IPC J-STD-003 IPC J-STD-075 Acceptability of IPC-1601 Electronic Assemblies Stencil Design IPC-A-610 Guidelines Test Methods IPC-7525 IPC-TM-650 Requirements for Soldered IPC-7526 PC-9631 Electronic Assemblies IPC-7527 IPC-9691 IPC J-STD-001, IPC-HDBK-001, IPC-AJ-820 Electrical Test Assembly IPC-9252 Materials Acceptability of Printed Boards IPC-A-600 IPC J-STD-004 IPC J-STD-005 Surface Finishes IPC-HDBK-005 Qualifications for Printed Boards IPC J-STD-006 IPC-4552 IPC-6011, 6012, 6013, 6017, 6018 IPC-SM-817 IPC-4553 IPC-CC-830 PC-4554 HDBK-830 IPC-4556 Base Materials for Printed Boards HDBK-850 PC-4101, 4104, 4202, 4203, & 4204 High Speed/ Frequency Solder Mask IPC-2141 IPC-SM-840 Design & Land Patterns PC-2251 PC-2221, 2222 & 2223 + 7351 Copper Foils Materials IPC-4562 Declaration Data Transfer and Electronic PC-1751 Product Documentation IPC-1752 IPC-2581 Series, IPC-2610 Series IPC-1755

Existing Specifications – IPC Standard Overview

NEPP Packging Focus

Doc#	Title	Comment
IPC-7091	Design and Assembly Process Implementation of 3D Components	
IPC-7092	Design and Assembly Process Implementation for Embedded Component	IPC-7091 is the main reference document. However the other four
IPC-7093	Design and Assembly Process Implementation for Bottom Termination SMT Components	documents represent important technology building blocks and previous generations.
IPC-7094	Design and Assembly Process Implementation for Flip Chip and Die Size Components	Reference to these for additional insights
IPC-7095	Design and Assembly Process Implementation for BGAs	

IPC-7091 Design and Assembly Process Implementation of 3D Components

- General Terms
- 2. Device Considerations
- 3. Interposer/Substrate Materials
- 4. Process Materials
- 5. Package Level Standardization
- 6. PWB Mounting Base/Stackup Considerations
- 7. Design Methodology
- 8. Assembly of 3D Packages on PWB
- 9. Testing and Product Verification
- 10. Reliability
- 11. Defect and Failure Analysis
- 12. Supplier Selection and Qualification

IPC-7091 View of 3D Packaging World*

- "The next generation of 3D assembly has many implementation challenges
- The technology is complex and requires process expertise that may require
 - Foundries
 - Outsourced Semiconductor Assembly and Test (OSAT) providers
 - Original Design Manufacturers (ODM).
- There is no clear direction where 3D packages will be built, tested and assembled.
- The type of process to be used and the order of assembly and stacking is not defined and depends on the assembler's expertise".

COTS use JEDEC standards

Qualification

- JESD47, Stress-Test Driven Qualification of Integrated Circuits
- JESD94, Application Specific Qualification Using Knowledge Based Test Methodology
- JEP148, Reliability Qualification of Semiconductor Devices Based on Physics of Failure and Risk and Opportunity
 Assessment
- JEP158 3D- Chip Stack With Through-Silicon Vias (TASVs): Identifying, Evaluating and Understanding Reliability Interactions

Model Development

- JEP122, Failure Mechanisms and Models for Semiconductor Devices
- JEP126, Guideline for Developing and Documenting Package Electrical Models Derived from Computational Analysis
- JEP132, Process Characterization Guideline
- JESD90, Method for Developing Acceleration Models for Electronic Component Failure Mechanisms

Failure Rate

- JESD37, Standard Lognormal Analysis of Uncensored Data, and of Singly Right -Censored Data Utilizing the Persson and Rootzen Method:
- JESD63, Standard Method for Calculating the Electromigration Model Parameters for Current Density and Temperature
- JESD74, Early Life Failure Rate Calculation Procedure for Electronic Components
- JESD85, Method of Calculating Failure Rates in Units of FITs

Package Qualification Tests — COTS "Black Box"

Package Qualification Reliability Tests:

Stresses
Reflow (240°C to 260°C), 3X
Reflow (240°C to 260°C), 1X, 5X, 10X, 15X, 20X
-40°C to +60°C, 1X, 10X, 20X, 40X
Conditions (B: -55°C to +125°C, G: -45°C to +125°C)
Bias HAST, HAST 130°C, 85% RH
Thermal Shock (B, G), X cycles
TH Bias, TH 85°C, 85% RH
150°C, 1000 hrs
Thermal Cycle, Shock test, Bend test, Vibration test

- Typical qualification based approach to testing
- 0 failure expected
- Provides generic reference point to compare to other technologies
- Begin to estimate Physics of Failure distributions and possible FIT rates

What might be missing? Test data from manufacturer

- Pre-bond interposer testing
 - Interposer cannot be tested (easily) before it is stacked with other die.
 - Requires both horizontal and vertical interconnection testing
 - Need strategy to for test connections that might not be device connections
- At speed testing
 - Use of IEEE 1149.1 TAP and BIST
 - Multiple metal layers can influence capture and update cycles due to clock variation
 - Hard to detect small delay defects
- High density I/O and Interconnects
 - Interposed can have >10K die to die interconnetions with as many as 1,500 I/O ports
 - 2.5D IC can have 25K C4 bumps but 250K microbumps!
 - Majority of I/O pins are connected to other die through interposer, not to external world

Formalism for Evaluation -1/2

- 2.5/3D packaging technology represents a new scaling approach way EEE parts technology (vs. Dennard transistor scaling)
- Scaling implies shrinking dimensions, increasing electric field, and changing materials.
- Just as with transistors similar reliability concerns/formalisms
- Mechanical failures usually dominate in packaging
 - Mismatch of TCE -> stress cracking under temperature cycling stress
- Electrical failures also must be considered
 - Electromigration (particularly from bumps)
 - Dielectric breakdown is also concern certainly for new materials w/ ULK materials

Formalism for Evaluation -2/2

- Daisy Chain packages offer simplest approach
 - Easy to determine failure location for DPA/FA
 - Often not available in state of the art, sophisticated technologies however
- Custom test devices sometimes available
 - Need collaboration with industry/partners
- Final product testing also required
 - Often the only way to get precise technology
 - Leverage vendor data and independent evaluation

Thermal Modeling and Measurement – A Best Practice

- Stacking multiple active device or packaging layers proportionally increases heat dissipation rates per unit volume
- New dielectric layers with low thermal conductivity that exist between chips can lead to high temperatures.
- Heat is the single biggest cause of failure in electronics.
- Reducing the operating junction temperature by as little as 10 °C can double a device's lifetime
- Managing thermal dissipation remains a primary challenge for multiple-die, configured components
 - Heat pipes
 - Liquid
 - Microchannels

Technology Roadmaps

Package Technology Scaling vs. Wafer

 Interposer and TSV bridge the gap in dimensions between heritage packages and wafer fab device dimensions

Scaling roadmap – I/O pitch, density and standoff height

Substrates play a critical role in 2.5/3D Packaging

Standard	HDI: Dense	HDI: LCP	HDI: PTFE
(Epoxy Glass or	(Particle Filled	(liquid crystal	(PTFE)
Polyimide)	Epoxy)	polymer)	

• Dielectric materials, etch processes, and interconnect dimensions drive reliabilty

Redistribution Layers (RDL)

- The redistribution layer (RDL) is the interface between chip and package for flip-chip assembly
- Used in flip-chip designs to redistribute I/O pads to bump pads without changing the I/O pad placement
- the chip that enables you to bond out from different locations on the chip, making chip-to-chip bonding simpler.
- The RDL process is performed following basic copper UBM plating. Redistribution employs an additive copper plating process following a passivation process that covers the active surface of the die (Figure

Packaging Technologies are Driven by End Market

	Mobile	IoT	RF	Automotive	Computing	Networking	Storage
QFN		•		•			
FBGA		•	•	•			
WLCSP		•	•				
FOWLP	•	•	•	•			
SiP	•	•	•	•			•
fcCSP	•		•	•			
FCBGA				•	•	•	
2.5D					•	•	
3D					•	•	
Si-PH					•	•	•

- Note many different package technologies needed for Automotive, RF and IoT markets.
- NASA applications can leverage these different technologies but need to be aware of market expectations.?

NEPP Package Testing Summary

			Package Type													
		TC_BGA	CA_BGA	CV_BGA	FCV_BGA	CSP	PBGA	FCBGA	LGA	QFN	TMV	TSV	Wafer Level	Stacked Silicon Interconnect (SSI)	Flip Chip w/ Organic Substrate	Cu Pillar
Testing Conditions	Daisy Chain	Y	Y	Y		Υ	Y	Y	Υ	Y	Y		Y		Y	Υ
	Product				Y				Υ			Υ		Y		
	-55 to 100C/ 200 cycles									Υ	Y		Y			
	-55 to 100C PoF TC									Υ					Y	Υ
	80C bake											Y		Y		
	200cycles/- 55C to 125C + 200 cycles/- 65C to 150C	Y	Y	Y	Y	Υ	Y	Y	Υ			Y				
	Custom JPL assembly protocol															
	HALT protocol		Y	Y		Υ	Y	Y								

jpl.nasa.gov